翻訳と辞書
Words near each other
・ Steinway (New York City Subway car)
・ Steinway D-274
・ Steinway Hall
・ Steinway Hall (Chicago)
・ Steinway Lyngdorf
・ Steinway Mansion
・ Steinway Musical Instruments
・ Steinway Street
・ Steinway Street (IND Queens Boulevard Line)
・ Steinway Tunnel
・ Steinway Vertegrand
・ Steinweiler
・ Steinwenden
・ Steinwiesen
・ Steinþór Freyr Þorsteinsson
Stein–Strömberg theorem
・ Steirachne
・ Steiractinia
・ Steirastoma
・ Steirastoma acutipenne
・ Steirastoma aethiops
・ Steirastoma albiceps
・ Steirastoma anomala
・ Steirastoma breve
・ Steirastoma coenosa
・ Steirastoma genisspina
・ Steirastoma histrionica
・ Steirastoma liturata
・ Steirastoma lycaon
・ Steirastoma marmorata


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Stein–Strömberg theorem : ウィキペディア英語版
Stein–Strömberg theorem
In mathematics, the Stein–Strömberg theorem or Stein–Strömberg inequality is a result in measure theory concerning the Hardy–Littlewood maximal operator. The result is foundational in the study of the problem of differentiation of integrals. The result is named after the mathematicians Elias M. Stein and Jan-Olov Strömberg.
==Statement of the theorem==
Let ''λ''''n'' denote ''n''-dimensional Lebesgue measure on ''n''-dimensional Euclidean space R''n'' and let ''M'' denote the Hardy–Littlewood maximal operator: for a function ''f'' : R''n'' → R, ''Mf'' : R''n'' → R is defined by
:Mf(x) = \sup_ \frac1 (x) \big)} \int_ | f(y) | \, \mathrm \lambda^ (y),
where ''B''''r''(''x'') denotes the open ball of radius ''r'' with center ''x''. Then, for each ''p'' > 1, there is a constant ''C''''p'' > 0 such that, for all natural numbers ''n'' and functions ''f'' ∈ ''L''''p''(R''n''; R),
:\| Mf \|_ \| f \|_} \leq C_ \| f \|_{L^{p}}
for all ''f'' ∈ ''L''''p''(R''n''; R). Thus, the Stein–Strömberg theorem is the statement that the Hardy–Littlewood maximal operator is of strong type (''p'', ''p'') uniformly with respect to the dimension ''n''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Stein–Strömberg theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.